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Statistical Properties of New Neutrality Tests Against Population Growth

Sebastian E. Ramos-Onsins and Julio Rozas
Departament de Genètica, Universitat de Barcelona, Barcelona

A number of statistical tests for detecting population growth are described. We compared the statistical power of
these tests with that of others available in the literature. The tests evaluated fall into three categories: those tests
based on the distribution of the mutation frequencies, on the haplotype distribution, and on the mismatch distribution.
We found that, for an extensive variety of cases, the most powerful tests for detecting population growth are Fu’s
FS test and the newly developed R2 test. The behavior of the R2 test is superior for small sample sizes, whereas FS

is better for large sample sizes. We also show that some popular statistics based on the mismatch distribution are
very conservative.

Introduction

Comparison of DNA sequences within and between
species is a powerful approach not only for determining
the evolutionary forces acting in specific gene regions
but also for determining relevant aspects of the evolu-
tionary history of the species (for reviews see, Takahata
1996; Rogers 1997; Harpending et al. 1998; Jorde, Bam-
shad, and Rogers 1998; Cann 2001). The coalescent the-
ory (Kingman 1982a, 1982b; Hudson 1990; Donnelly
and Tavaré 1995; Fu and Li 1999) is the most powerful
theoretical approach for interpreting DNA sequence
data. The coalescent is a population genetic model fo-
cused primarily on the neutral evolution of gene trees;
this model provides the framework for the development
of statistical tests and also provides very efficient com-
puter simulations methods.

Tajima (1989b), Slatkin and Hudson (1991), and
Rogers and Harpending (1992) pioneered the study of
the effect of some demographic events on DNA se-
quence data. They have shown that a relatively recent
demographic event, such as a population growth, causes
most of the coalescent events to occur before the ex-
pansion and, consequently, samples of these populations
have gene genealogies stretched near the external nodes
and compressed near the root (i.e., star genealogies).
Thus, population size changes can leave a particular
footprint that may eventually be detected in DNA se-
quence data. This theoretical framework prompted the
development of statistical tests for detecting population
expansion.

The analysis of the distribution of pairwise differ-
ences, or mismatch distribution (Slatkin and Hudson
1991; Rogers and Harpending 1992), provides a method
for inferring such demographic events. These authors
have shown that, for nonrecombining DNA regions,
constant size populations presented mismatch distribu-
tions with shapes with very little resemblance to that
expected in growing populations. This prompted the de-
velopment of some statistical tests for detecting expan-
sion processes (Harpending et al. 1993; Harpending
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1994; Eller and Harpending 1996; Rogers et al. 1996).
One of the most frequently used tests is the raggedness
statistic rg (Harpending et al. 1993). Although the dis-
tribution of the rg statistic is unknown, its confidence
intervals could be obtained by computer simulations
based on the coalescent algorithm. But because methods
based on the mismatch distribution use little information
accumulated in the data (Felsenstein 1992), tests based
on the mismatch distribution should be very
conservative.

In recent years, a number of authors have devel-
oped several methods of statistical inference and statis-
tical tests using different approaches (e.g., Griffiths and
Tavaré 1994; Bertorelle and Slatkin 1995; Rogers 1995;
Aris-Brosou and Excoffier 1996; Fu 1996, 1997; Ku-
hner, Yamato, and Felsenstein 1998; Weiss and Von
Haeseler 1998; Galtier, Depaulis, and Barton 2000; Fur-
long and Brookfield 2001). More recently, specific
methods for detecting population expansions have also
been developed for the analysis of microsatellite data
(e.g., Kimmel et al. 1998; Reich and Goldstein 1998;
Beaumont 1999; Reich, Feldman, and Goldstein 1999;
King, Kimmel, and Chakraborty 2000).

Here we report the development of new statistical
tests for detecting past population growth. We per-
formed an extensive analysis of their statistical power
against different alternative hypotheses, and we com-
pared their relative performance with respect to others
published in the literature. Although some authors
(Braverman et al. 1995; Simonsen, Churchill, and
Aquadro 1995; Fu 1996, 1997) have also investigated
the power of some statistical tests against population
growth and genetic hitchhiking (which leave similar
footprints in DNA sequences), at present there is no ex-
haustive comparative analysis. The major population
growth model investigated was the sudden (instanta-
neous) growth, although we also studied the power un-
der the logistic model of population growth. The power
of these tests was evaluated using random data sets gen-
erated by computer simulations based on the coalescent
(Hudson 1990).

Materials and Methods

We analyzed the performance of 17 statistical tests
to distinguish specific models of population growth from
the null hypothesis of a constant size population under
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the neutral model. Thus, we determined the power of
these tests to reject the null hypothesis when the alter-
native hypothesis is really true. On the basis of the se-
quence information used, the test statistics evaluated
have been classified into three major classes, namely
classes I, II and III (see below). We developed several
new statistical tests based on high-order moments (with-
in classes I and III) because the distortion of the gene
tree caused by the population growth would suggest that
these types of tests could be more powerful than other
tests available in the literature.

Class I Statistics

Class I statistics use information of the mutation
(segregating site) frequency. These statistics could be
appropriate to distinguish population growth from con-
stant size populations because the former generates an
excess of mutations in external branches of the geneal-
ogy (i.e., recent mutations) and therefore an excess of
singletons (substitutions present in only one sampled se-
quence) (Tajima 1989a, 1989b; Slatkin and Hudson
1991).

We studied the following test statistics: Tajima’s D,
and Fu and Li’s D*, F*, D (named DF) and F statistics
(Tajima 1989a; Fu and Li 1993; see also Simonsen,
Churchill, and Aquadro 1995). These tests are based on
the difference between two alternative estimates of the
mutational parameter u 5 2Nu, where N is the effective
number of gene copies in the population (the number of
females in the population for mtDNA regions or double
the population size for an autosomal region) and u is
the mutation rate. Tajima’s D and Fu and Li’s D* and
F* statistics use information from only intraspecific
data, whereas Fu and Li’s DF and F statistics use infor-
mation from the number of recent mutations; the latter,
therefore, requires the presence of an outgroup to be
computed.

We developed a number of tests based on the dif-
ference between the number of singleton mutations and
the average number of nucleotide differences. The R2
statistic is defined as

2 1/2n k
U 2 nO i1 1 2 @ 22i51

R 5 (1)2 S

where n is the sample size, S the total number of seg-
regating sites, k the average number of nucleotide dif-
ferences between two sequences, and Ui the number of
singleton mutations in sequence i. The rationale of this
test is that the expected numbers of singletons on a ge-
nealogy branch after a recent severe population growth
event is k/2; consequently, lower values of R2 are ex-
pected under this demographic scenario. The R2 statistic
will be computed in the next version of the DnaSP (Ro-
zas and Rozas 1999) software.

We also built two R2 related tests namely, R3 and
R4. These statistics differ from the R2 test in the power
exponent values; in R3 and R4, the exponent values of

2 and 1/2 (eq. 1) are replaced by 3 and 1/3, and by 4
and 1/4, respectively.

We have constructed three additional test statistics
(R2E, R3E, and R4E) that use information on the number of
mutations in external branches; thus, an outgroup will be
required for their estimation. The R2E test is defined as

2 1/2n k
V 2 nO i1 1 2 @ 22i51

R 5 (2)2E S

where Vi is the number of external mutations in se-
quence i. The R3E and R4E tests differ from the R2E test
in the power values; the exponent values of 2 and 1/2
of equation (2) are replaced by 3 and 1/3, and by 4 and
1/4, respectively.

We have also developed two other tests (Ch and
Che) based on the difference between the number of
singleton (and also for recent) mutations and their ex-
pected value:

2(U 2 m) S
Ch 5 (3)

m(S 2 m)

where

nk
m 5

n 2 1

and U is the total number of singleton mutations. The
Che test is constructed in the same way but by using
information on the external mutations.

Class II Statistics

In class II, we include statistical tests that use in-
formation from the haplotype distribution. We have only
studied Fu’s FS test statistic (Fu 1997) within this class.
This statistic, which is based on the Ewens’ sampling
distribution (Ewens 1972), has low values with the ex-
cess of singleton mutations caused by the expansion.

Class III Statistics

Class III statistical tests use information from the
distribution of the pairwise sequence differences (or
mismatch distribution). It has been shown that popula-
tion expansions leave a particular signature in the dis-
tribution of the pairwise sequence differences (Slatkin
and Hudson 1991; Rogers and Harpending 1992); there-
fore, statistics based on the mismatch distribution can
be used to test for demographic events. We evaluated
the following statistics. (1) The raggedness rg statistic
(Harpending et al. 1993; Harpending 1994). The rag-
gedness statistic, which measures the smoothness of the
mismatch distribution, differs among constant size and
growing populations: lower rg values are expected un-
der the population growth model. (2) The mean absolute
error (MAE) between the observed and the theoretical
mismatch distribution (Rogers et al. 1996). (3) We also
developed a new statistical test, the ku test, based on the
fourth central moment (i.e., on the kurtosis) of the mis-
match distribution. Given that population expansion
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generates more smoothly peaked distributions, this sta-
tistic can distinguish between constant size and growing
populations. Let d, nc, and Wi be the maximum number
of differences in the mismatch distribution, the number
of pairwise comparisons (5 n (n 2 1)/2), and the fre-
quency of pairs of DNA sequences that differ by i mu-
tations, respectively. We define:

n (n 1 1)qc cku 5
2(n 2 1)(n 2 2)(n 2 3)sc c c

23(n 2 1)c2 (4)
(n 2 2)(n 2 3)c c

where

d
4q 5 W (i 2 k) , andO i

i50

d
2s 5 W (i 2 k) /(n 2 1)O i c

i50

Empirical Distributions

We obtained the empirical distribution of each sta-
tistical test by Monte Carlo simulations based on the
coalescent process for a neutral infinite-sites model, as-
suming a large population size (Kingman 1982a, 1982b;
Hudson 1990). We also assumed that there is neither
intragenic recombination nor migration and that the mu-
tation rate is homogeneous across the DNA region. We
performed the simulations conditional on the number of
segregating sites (S); that is, placing randomly S muta-
tions along the tree (the so-called fixed S method). Giv-
en that the actual value of u is usually unknown, this
method seems to be appropriate for testing purposes
(Hudson 1993). The routine ran1 (Press et al. 1992) was
used as a random number generator. We conducted co-
alescent simulations for constant population size (null
hypothesis) and for population growth (alternative hy-
pothesis); the empirical distribution was estimated from
100,000 computer replicates for both the null and the
alternative hypotheses.

For the constant size model (null hypothesis), the
samples were generated using conventional procedures
(Hudson 1990); in this model only two parameters are
required: the sample size and the number of segregating
sites. The sudden population growth model (Rogers and
Harpending 1992) considers a population that was for-
merly at equilibrium, but te generations before the pre-
sent one the population grew suddenly to the current
size. Coalescent simulations under the sudden expansion
model require four parameters: n, S, te, and De, where
De, the degree of the expansion event, is:

D 5 N /Ne max 0 (5)

where Nmax is the maximum population size (i.e., the
current population size under the sudden expansion
model) and N0 is the initial population size. For the sim-
ulations the te values were scaled in terms of Nmax gen-
erations (denoted by Te). Coalescent simulations under

the sudden expansion model were performed by chang-
ing the time of the nodes as in

T, T # TeT 51  T 2 TeT 1 , T . Te eD e

where T and T1 are the coalescence times (measured in
Nmax generations) under the constant size (i.e., the stan-
dard coalescent) and under the sudden expansion mod-
els, respectively (see Nordborg 2001). Under the later
scenario, we generated samples using an extensive set
of values of the parameter space.

We also conducted some coalescent simulations as-
suming that the population follows the logistic model of
growth. In this model

N 2 Nmax 0N 5 N 1 (6)T 0 2r(T 2T2c)S1 1 e

were Nmax is the maximum population size, NT the pop-
ulation size at time T (the time is measured in Nmax

generations), r the growth rate, TS the elapsed time
(measured in Nmax generations) from the beginning of
the growth event, and c represents the reflection point
of the growth curve (see eq. 16 in Fu 1997). It should
be noted that under this model the current population
size could be equal or lower than the Nmax.

Coalescent simulations under the logistic model of
growth were generated changing the times of the nodes
according to the population size. These times are given by

T1
T 5 N(x) dx (7)1 ENc 0

where T and T1 are the coalescence times (measured in
Nmax generations) of each node under the constant size
and under the demographic models, respectively, Nc the
current population size (i.e., T 5 0) which can be ob-
tained from equation 6, and N(x) the population size at
time x (eq. 6). Therefore, we will compare two empirical
distributions (under the null and the alternative hypoth-
eses) with the same population size (Nc) at the sampling
time.

Critical Values and the Power of the Tests

We determined the critical values of each statistical
test from its empirical distribution. The power of each
test, or the probability of rejecting the null hypothesis
(constant size population) when the alternative hypoth-
esis (population growth) is true, was estimated as the
proportion of computer replicates generated under the
alternative hypothesis for which the null hypothesis was
rejected. For the analysis, we fixed a significance level
of a 5 0.05. Because the critical region for all alter-
native hypotheses would consist of only one side of the
distribution, we conducted one-tailed tests. Specifically,
all analyzed statistics, except Ch, Che, and ku had lower
values under the population growth model.

Given that under the null hypothesis the empirical
distribution of some statistics presented a reduced num-
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FIG. 1.—Effect of the elapsed time since the expansion event on the power of statistical tests. Results based on 100,000 sample replicates. (A)
n 5 10, S 5 10, and De 5 100. (B) n 5 10, S 5 50, and De 5 100. (C) n 5 50, S 5 10, and De 5 10. (D) n 5 50, S 5 50, and De 5 10.

ber of points (e.g., the distribution of D* statistic; see
Results), the actual probability of rejecting the null hy-
pothesis when it is true (i.e., the size of the test) could
be lower than the nominal significance level of 0.05.

Results
Sudden Population Growth Model

We studied the power of 17 statistical tests under
different values of n, S, De, and Te. Although we have
examined the power for a wide range of the parameter
space, we will show only the most relevant cases (ad-
ditional results and figures are available from the au-
thors). The parameters fixed for illustrating the power
were n 5 10 and n 5 50, S 5 10 and S 5 50, De 5
10 and De 5 100, and Te 5 0.1 (time for the maximum
power; see below). These values give a clear view of
the statistical power under some realistic cases: for small
and big sample sizes, for a low and high number of
mutations and for reasonable population growth param-
eters. In all cases, the parameter sets were chosen to
avoid saturation of the power curves.

The power analysis of the tests R3, R4, R3E, and R4E

show a similar power than the R2 and will not be pre-
sented here. Nevertheless, for some specific set of pa-
rameters the R4 and R4E tests presented a slightly higher
power than R2. Generally, results of the statistical power
of all statistical tests that use interspecific data presented
a similar power than its equivalent statistic using intra-
specific information (figures not shown).

Figure 1 shows the effect of Te—the time elapsed
since the expansion event—on the statistical power of
different statistical tests. It can be observed that R2 and
Fu’s FS are the most powerful tests: the R2 test is the
most powerful for small sample sizes, whereas the be-
havior of Fu’s FS is better for large samples. The power
of Tajima’s D and Fu and Li’s F* is lower than R2 and
FS. The results also indicate that some commonly used
tests based on the mismatch distribution, rg and MAE,
are among the least powerful. All statistical tests show
a peak in the statistical power at intermediate values of
Te (Te ; 0.1); thus, it is unlikely to detect a population
expansion when Te is too small or too large. This result
agrees with that obtained by Simonsen, Churchill, and
Aquadro (1995) and Fu (1997).

The results of the effect of De on the power to
reject the constant size model are depicted in figure 2.
All statistical tests, except class III, increase the power
to reject the constant size model with increasing De;
therefore, large samples will be needed to detect small
population growth events. Again, tests based on the mis-
match distribution are very insensitive in detecting pop-
ulation growths. The most powerful statistics are the R2

and the FS. Tajima’s D, Fu and Li’s F* and D* and Ch
have comparatively less power.

Figures 3 and 4 show the effect of the sample size
and the number of segregating sites on the power to
reject the neutral constant size model under specific al-
ternative hypotheses. It should be expected that both



2096 Ramos-Onsins and Rozas

FIG. 2.—Effect of the degree of the expansion on the power of statistical tests. Results based on 100,000 sample replicates. (A) n 5 10, S
5 10, and Te 5 0.1. (B) n 5 10, S 5 50, and Te 5 0.1. (C) n 5 50, S 5 10, and Te 5 0.1. (D) n 5 50, S 5 50, and Te 5 0.1.

FIG. 3.—Effect of the sample size on the power of statistical tests. Results based on 100,000 sample replicates. (A) S 5 10, De 5 100, and
Te 5 0.1. (B) S 5 50, De 5 10, and Te 5 0.1.

variables have a major effect on the statistical power,
the larger the values of n or S, the more the power of
the tests. But the effect on the power is different for
different statistics: for small sample sizes (and a small
number of segregating sites) the R2 statistical test is the
most powerful (figs. 3A and 4A), whereas for larger sam-
ple sizes FS is the most powerful one. Moreover, for
small sample sizes the power of DF and F is better than
the counterpart tests without outgroup, although they are
not as powerful as R2 and FS (figure not shown). The
results also indicate that statistical tests based on the
mismatch distribution, the rg, and the MAE are among
the least powerful. In fact, in some cases, the power
decreases as the sample size increases.

It should be noted that statistics D* (figs. 3A and
4B) and FS (fig. 4A) have an irregular behavior because
they show some atypical power drops with increasing
sample size or the number of segregating sites. This un-
expected pattern has two different explanations. In the
case of Fu and Li’s D* statistic, the power drop is caused
by a marked decrease in the actual significance level
(i.e., the size of the test). In fact, the D* empirical dis-
tribution has a reduced number of possible points caus-
ing, for some specific values, this level to drop to 0.02.
The atypical pattern of the FS test is due to the intrinsic
structure of the statistic. In fact, the empirical distribu-
tion of FS (both under H0 and H1 hypotheses) presents
pronounced changes at specific ranges of values. That
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FIG. 4.—Effect of the number of segregating sites on the power of statistical tests. Results based on 100,000 sample replicates. (A) n 5
10, De 5 100, and Te 5 0.1. (B) n 5 50, De 5 10, and Te 5 0.1.

Table 1
Application of Some Statistical Tests to DNA
Polymorphism Data

R2 FS D rg

mtDNA Data (Comas et al. 1996)
n 5 10; S 5 21

Observed value . . . .
P valuea . . . . . . . . . .
Powerb . . . . . . . . . . .

0.0813
0.009
0.41

25.585
0.003
0.31

21.271
0.107
0.06

0.0523
0.243
0.14

Autosomal data (Alonso and Armour 2001)
n 5 20; S 5 5

Observed value . . . .
R 5 0; P valuea . . .
Powerc . . . . . . . . . . .
R 5 1; P valuea . . .
Powerc . . . . . . . . . . .
R 5 10; P valuea . .
Powerc . . . . . . . . . . .

0.0923
0.063
0.48
0.058
0.50
0.050
0.53

22.646
0.042
0.57
0.046
0.58
0.099
0.42

21.140
0.139
0.46
0.131
0.47
0.095
0.67

0.147
0.528
0.01
0.561
0.01
0.741
0.0

a Probability of obtaining values equal or lower than the observed.
b Power values assuming the sudden expansion model with a 5 0.05, De

5 100, and Te 5 0.4.
c Power values assuming the sudden expansion model with a 5 0.05, De

5 100, and Te 5 0.1.

pattern causes marked changes in the power when these
values are within the rejection region (results not
shown). Nevertheless, this irregular behavior is not pre-
sent in coalescent simulations conditional on the value
of u (results not shown).

Logistic Population Growth Model

We also conducted the analysis of power under a
more realistic population growth scenario, the logistic
population growth model. Using this model, we per-
formed an explorative analysis of the most relevant cas-
es to validate the conclusions of our work. We found
that the assumption of the logistic population growth
model does not change the major conclusions of the
work. Even so, in comparison with the sudden growth
model the maximum power of the tests is reached at
higher values of the elapsed time; for instance, for the
parameter sets used in Fu (1997) (r 5 10, c 5 1) the
maximum power is at Ts ; 1.2. In general, as expected
(1) all statistical tests have less power under the logistic

than under the sudden growth models; nevertheless the
decrease in the power is relatively uniform for all sta-
tistical tests and (2) the larger the value of r, the more
power the tests have.

Application to DNA Sequence Data

The present results have been applied to two pub-
lished DNA data sets: the mtDNA variation analysis of
a Turkish human population (Comas et al. 1996), and
the survey of a human noncoding autosomal region
(Alonso and Armour 2001). Comas et al. (1996) se-
quenced 360 base pairs of the region I of the mtDNA
D-loop in 45 individuals. From the mismatch distribu-
tion analysis the authors suggested that the Turkish pop-
ulation had expanded recently. We determined the power
of the different tests to identify which is most powerful
against population growth. For the total data (n 5 45;
S 5 56) and considering that De 5 100 and Te 5 0.4
(scaled in terms of N generations) most tests were pow-
erful enough, and several of them could reject the null
hypothesis of constant size. We also determined whether
the tests could also reject the null hypothesis for small
sample sizes. For that, we reanalyzed a subset of 10
randomly chosen sequences from the data of Comas et
al. (1996). Table 1 shows the estimates of the power and
of P values of some statistical tests. The results clearly
illustrate that the constant size hypothesis can be re-
jected by the most powerful tests (Fu’s FS and R2).

We also compared the P values and the power of
the R2 and some of the statistical tests used in Alonso
and Armour (2001). These authors performed a nucle-
otide variation study in 100 chromosomes sampled from
different African and Euroasiatic populations. Although
the surveyed region is autosomal, the Alonso and Ar-
mour (2001) results suggested that recombination should
be reduced. We analyzed the Japanese population (n 5
20; S 5 5) using the same values of the recombination
parameter R (R 5 2Nr, where r is the recombination
rate per generation) as the published ones; for that anal-
ysis we used Hudson’s (1983) algorithm to generate
DNA samples under the coalescent with recombination
(results based on 10,000 replicates). For the power anal-
ysis we consider that De 5 100 and Te 5 0.1. For R 5
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FIG. 5.—Effect of the elapsed time since the expansion event on the power of statistical tests under the logistic model of population growth.
Results based on 100,000 sample replicates, fixing the value of u (u 5 10) with n 5 50, r 5 10, c 5 1, Nmax 5 20,000 and N0 5 1000.

0 (no recombination) only the FS test can reject the null
hypothesis of constant size. But for increasing recom-
bination values the power of R2 and Tajima’s D tests
increases, whereas it decreases for FS and rg. In fact,
for R 5 10 only R2 allows the null hypothesis to be
rejected.

Discussion

In this article, we have examined the power of sev-
eral statistical tests to determine which are most pow-
erful in different population growth scenarios. The anal-
ysis has been performed by using a coalescent-based
approach. There are other alternative approaches (like-
lihood-based methods) to study a population expansion
process: the maximum likelihood (e.g., Griffiths and Ta-
varé 1994; Kuhner, Yamato, and Felsenstein 1998;
Weiss and Von Haeseler 1998) and the Bayesian ap-
proaches (see Stephens 2001). The likelihood provides
a framework for testing hypotheses; specifically, tests
based on the likelihood ratio test statistic, d 5 22 ln
(L0/L1), where L0 and L1 are the maximum likelihood
values under the null and the alternative hypothesis, can
be used to discriminate between constant size and pop-
ulation growth. Unfortunately, the standard x2 approxi-
mation for the distribution of d might be inadequate. The
empirical distribution of d could be generated, however,
by computer simulation and from that distribution the
critical values could also be obtained; nevertheless, this
method is computationally very intensive.

We have shown that tests based on the mismatch
distribution have little power against population growth.
The MAE test is the less powerful one; although rg is
more powerful than MAE, it works less well than nearly
all class I and class II tests examined. ku, the newly
developed test of class III, although better than MAE

and rg, is clearly inferior to other class I and class II
tests.

On the other hand, several class I and class II tests
can detect population expansion even for small De val-
ues. We have shown that two of the surveyed tests (R2
and FS) are the most powerful for a variety of different
conditions. These tests should therefore be chosen to test
constant population size versus population growth. In
particular, we suggest using the R2 statistical test for
small sample sizes and FS for large ones. Nevertheless,
because R2 and FS statistics use different kinds of in-
formation, discrepancies between these tests could pro-
vide information about the action of other evolutionary
processes, for example on the intragenic recombination
(see below).

Fu (1997) studied the power of some statistics under
the logistic model of population growth. He conducted
coalescent simulations fixing theta (u 5 5, u 5 10) in-
stead of fixing S. To check the behavior of R2, and other
mismatch-based statistics, under these conditions we per-
formed some additional simulations conditional on u. We
found that the R2 and FS are again the most powerful
statistics (see an example in fig. 5). Interestingly, rg and
MAE have better results fixing u than fixed S.

Intragenic Recombination

The results from the present analysis are appropri-
ate for nonrecombining DNA regions (i.e., mitochon-
drial or Y-chromosomal DNA regions). It is expected,
however, that intragenic recombination substantially af-
fects the power of the statistical tests surveyed (Rozas
et al. 1999; Wall 1999). Indeed, a loss of power for those
tests based on the haplotype distribution is expected
(class II tests; e.g., Fu’s FS test) or for those based on
the mismatch distribution (class III tests; e.g., rg test).
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The reason is that recombination, by shuffling nucleo-
tide variation among DNA sequences (1) increases the
number of haplotypes and (2) generates a much smooth-
er mismatch distribution (Poisson-like). Consequently,
class II and class III tests could be inadequate in de-
tecting the signature left by a population growth on a
recombining DNA region. Class I tests, on the contrary,
should be less sensitive to intragenic recombination. To
check our prediction, we conducted a few coalescent
simulations using different values of the recombination
parameter. Our preliminary results comparing the power
of R2 and FS tests show that the behavior of the former
is better than the FS for increasing levels of recombi-
nation (also see table 1).

Coalescent Simulations Conditional on the Number of
Segregating Sites

The present power analyses have been performed
conducting coalescent simulations conditional on the
number of segregating sites. Given that the actual value
of u is usually unknown, and that estimates of u are
usually obtained from DNA polymorphism data infor-
mation, the method seems to be appropriate (Hudson
1993; Depaulis, Mousset, and Veuille 2001; Wall and
Hudson 2001). But Markovtsova, Marjoram, and Tavaré
(2001) pointed out correctly that the power of coales-
cent-based tests are not independent of u and, therefore,
the statistical power might vary as a function of u for a
given n and S. To check that effect on the R2 we per-
formed a prospective analysis generating samples con-
ditional on u and S using the rejection algorithm of Ta-
varé et al. (1997). The results yield the same conclusions
as that of Depaulis, Mousset, and Veuille (2001) and
Wall and Hudson (2001), i.e., the fixed S method seems
to be appropriate unless the actual value of u is far from
Watterson’s (1975) estimate of u.

Competitive Alternative Hypotheses

It should be stressed that a significant result (a sig-
nificant departure from the null hypothesis) should be
interpreted cautiously: there are several putative alter-
native hypotheses to single null hypotheses. Indeed, pro-
cesses other than population expansion, such as genetic
hitchhiking (Maynard Smith and Haigh 1974), could
also produce similar genealogies (i.e., departures of the
statistical tests in the same direction). Therefore, addi-
tional analyses could be necessary to discriminate be-
tween some competitive alternative hypotheses. For in-
stance, because genetic hitchhiking in regions under-
going recombination will affect a relatively small frac-
tion of the genome (close to the advantageous mutation),
surveys at different gene regions across the genome
could provide the opportunity to discriminate between
population expansion and genetic hitchhiking (see Gal-
tier, Depaulis, and Barton 2000).

To summarize, FS and R2 are the best statistical
tests for detecting population growth. The behavior of
R2 is better for small sample sizes, whereas FS is better
for bigger sample sizes. Additionally, preliminary re-
sults also indicate that the behavior of R2 should be su-

perior when the intragenic recombination is considered.
On the other hand, some popular statistics based on the
mismatch distribution, rg and MAE, are very
conservative.
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tamental de Recerca i Tecnologia, Catalonia, Spain, con-
ferred on M. Aguadé.
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